Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Environ Technol Innov ; 28: 102667, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1851091

ABSTRACT

This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d - 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.

2.
Environ Res ; 207: 112204, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1466328

ABSTRACT

The fate of Coronaviruses (CoVs) and in particular SARS-CoV-2 in wastewater treatment plants (WWTPs) has not been completely understood yet, but an adequate knowledge on the removal performances in WWTPs could help to prevent waterborne transmission of the virus that is still under debate. CoVs and SARS-CoV-2 are discharged from faeces into the sewer network and reach WWTPs within a few hours. This review presents the fate of SARS-CoV-2 and other CoVs in the primary, secondary and tertiary treatments of WWTPs as well as in sludge treatments. The viral loads decrease progressively along with the treatments from 20 to 3.0E+06 GU/L (Genomic Units/L) in the influent wastewater to concentrations below 2.50E+05 GU/L after secondary biological treatments and finally to negative concentrations (below detection limit) in disinfected effluents. Reduction of CoVs is due to (i) natural decay under unfavourable conditions (solids, microorganisms, temperature) for relatively long hydraulic retention times and (ii) processes of sedimentation, filtration, predation, adsorption, disinfection. In primary and secondary settling, due to the hydrophobic properties, a partial accumulation of CoVs may occur in the separated sludge. In secondary treatment (i.e. activated sludge) CoVs and SARS-CoV-2 loads can be reduced only by about one logarithm (∼90%). To enhance this removal, tertiary treatment with ultrafiltration (Membrane Bioreactors) and chemical disinfection or UV light is needed. CoVs and SARS-CoV-2 in the sludge (1.2E+04-4.6E+08 GU/L) can be inactivated significantly in the thermophilic digestion (55 °C), while mesophilic temperatures (33-37 °C) are not efficient. Additional studies are required to investigate the infectivity of SARS-CoV-2 in WWTPs, especially in view of increasing interest in wastewater reclamation and reuse.


Subject(s)
COVID-19 , Water Purification , Humans , SARS-CoV-2 , Sewage , Wastewater
3.
Environmental and Health Management of Novel Coronavirus Disease (COVID-19 ) ; : 145-176, 2021.
Article in English | PMC | ID: covidwho-1296991
4.
Sci Total Environ ; 743: 140444, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-612436

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, has been found in the faeces of infected patients in numerous studies. Stool may remain positive for SARS-CoV-2, even when the respiratory tract becomes negative, and the interaction with the gastrointestinal tract poses a series of questions about wastewater and its treatments. This review aims to understand the viral load of SARS-CoV-2 in faeces and sewage and its fate in wastewater treatment plants (WWTPs). The viral load in the faeces of persons testing positive for SARS-CoV-2 was estimated at between 5·103 to 107.6 copies/mL, depending on the infection course. In the sewerage, faeces undergo dilution and viral load decreases considerably in the wastewater entering a WWTP with a range from 2 copies/100 mL to 3·103 copies/mL, depending on the level of the epidemic. Monitoring of SARS-CoV-2 in sewage, although no evidence of COVID-19 transmission has been found via this route, could be advantageously exploited as an early warning of outbreaks. Preliminary studies on WBE seem promising; but high uncertainty of viral loads in wastewater and faeces remains, and further research is needed. The detection of SARS-CoV-2 in sewage, based on RNA sequences and RT-PCR, requires a shared approach on sample pre-treatment and on-site collection to ensure comparable results. The finding of viral RNA in stools does not imply that the virus is viable and infectious. Viability of CoVs such as SARS-CoV-2 decreases in wastewater - due to temperature, pH, solids, micropollutants - but high inactivation in WWTPs can be obtained only by using disinfection (free chlorine, UVC light). A reduction in the quantity of disinfectants can be obtained by implementing Membrane-Bioreactors with ultrafiltration to separate SARS-CoV-2 virions with a size of 60-140 nm. In sludge treatment, thermophilic digestion is effective, based on the general consensus that CoVs are highly sensitive to increased temperatures.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Wastewater , COVID-19 , Feces , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL